Camera chip provides superfine 3-D resolution

Imagine you need to have an almost exact copy of an object. Now imagine that you can just pull your smartphone out of your pocket, take a snapshot with its integrated 3-D imager, send it to your 3-D printer and, within minutes, you have reproduced a replica accurate to within microns of the original object. This feat may soon be possible because of a new, tiny high-resolution 3-D imager developed at Caltech.

Any time you want to make an exact copy of an object with a 3-D printer, the first step is to produce a high-resolution scan of the object with a 3-D camera that measures its height, width, and depth. Such 3-D imaging has been around for decades, but the most sensitive systems generally are too large and expensive to be used in consumer applications.

A cheap, compact yet highly accurate new device known as a nanophotonic coherent imager (NCI) promises to change that. Using an inexpensive silicon chip less than a millimeter square in size, the NCI provides the highest depth-measurement accuracy of any such nanophotonic 3-D imaging device.

The work, done in the laboratory of Ali Hajimiri, the Thomas G. Myers Professor of Electrical Engineering in the Division of Engineering and Applied Science, is described in Optics Express.

Inhibitor for abnormal protein points way to more selective cancer drugs

Nowhere is the adage "form follows function" more true than in the folded chain of amino acids that makes up a single protein macromolecule. But proteins are very sensitive to errors in their genetic blueprints. One single-letter DNA "misspelling" (called a point mutation) can alter a protein's structure or electric charge distribution enough to render it ineffective or even deleterious.

Unfortunately, cells containing abnormal proteins generally coexist alongside those containing the normal (or "wild") type, and telling them apart requires a high degree of molecular specificity. This is a particular concern in the case of cancer-causing proteins.

"With present technologies, developing a drug that will target only the mutant version of a protein is difficult," notes Blake Farrow, a graduate student in materials science at Caltech and a Howard Hughes Medical Institute Fellow. "Most anticancer agents indiscriminately attack both mutant and healthy proteins and tissues."

Combing through terahertz waves

Light can come in many frequencies, only a small fraction of which can be seen by humans. Between the invisible low-frequency radio waves used by cell phones and the high frequencies associated with infrared light lies a fairly wide swath of the electromagnetic spectrum occupied by what are called terahertz, or sometimes submillimeter, waves. Exploitation of these waves could lead to many new applications in fields ranging from medical imaging to astronomy, but terahertz waves have proven tricky to produce and study in the laboratory. Now, Caltech chemists have created a device that generates and detects terahertz waves over a wide spectral range with extreme precision, allowing it to be used as an unparalleled tool for measuring terahertz waves.

“Freezing a bullet” to find clues to ribosome assembly process

Ribosomes are vital to the function of all living cells. Using the genetic information from RNA, these large molecular complexes build proteins by linking amino acids together in a specific order. Scientists have known for more than half a century that these cellular machines are themselves made up of about 80 different proteins, called ribosomal proteins, along with several RNA molecules and that these components are added in a particular sequence to construct new ribosomes, but no one has known the mechanism that controls that process.

Now researchers from Caltech and Heidelberg Univ. have combined their expertise to track a ribosomal protein in yeast all the way from its synthesis in the cytoplasm, the cellular compartment surrounding the nucleus of a cell, to its incorporation into a developing ribosome within the nucleus. In so doing, they have identified a new chaperone protein, known as Acl4, that ushers a specific ribosomal protein through the construction process and a new regulatory mechanism that likely occurs in all eukaryotic cells.

Tracking photosynthesis from space

Watching plants perform photosynthesis from space sounds like a futuristic proposal, but a new application of data from NASA's Orbiting Carbon Observatory-2 (OCO-2) satellite may enable scientists to do just that. The new technique, which allows researchers to analyze plant productivity from far above Earth, will provide a clearer picture of the global carbon cycle and may one day help researchers determine the best regional farming practices and even spot early signs of drought.

When plants are alive and healthy, they engage in photosynthesis, absorbing sunlight and carbon dioxide to produce food for the plant, and generating oxygen as a by-product. But photosynthesis does more than keep plants alive. On a global scale, the process takes up some of the man-made emissions of atmospheric carbon dioxide—a greenhouse gas that traps the sun's heat down on Earth—meaning that plants also have an important role in mitigating climate change.

Yeast protein network could provide insights into obesity

A team of biologists and a mathematician have identified and characterized a network composed of 94 proteins that work together to regulate fat storage in yeast.

"Removal of any one of the proteins results in an increase in cellular fat content, which is analogous to obesity," says study coauthor Bader Al-Anzi, a research scientist at Caltech.

The findings, detailed in PLOS Computational Biology, suggest that yeast could serve as a valuable test organism for studying human obesity.

"Many of the proteins we identified have mammalian counterparts, but detailed examinations of their role in humans has been challenging," says Al-Anzi. "The obesity research field would benefit greatly if a single-cell model organism such as yeast could be used—one that can be analyzed using easy, fast, and affordable methods."

Electrical control of quantum bits in silicon paves the way to large quantum computers

A Univ. of New South Wales (UNSW)-led research team has encoded quantum information in silicon using simple electrical pulses for the first time, bringing the construction of affordable large-scale quantum computers one step closer to reality.

Lead researcher, UNSW Assoc. Prof. Andrea Morello from the School of Electrical Engineering and Telecommunications, said his team had successfully realized a new control method for future quantum computers.

The findings were published in Science Advances.

Unlike conventional computers that store data on transistors and hard drives, quantum computers encode data in the quantum states of microscopic objects called qubits.

The UNSW team, which is affiliated with the ARC Centre of Excellence for Quantum Computation & Communication Technology, was first in the world to demonstrate single-atom spin qubits in silicon, reported in Nature in 2012 and 2013.


Blogroll

Kategori

Kategori